E S T O N I A N   T O U R N A M E N T   B R I D G E   L E A G U E
G R A N D   P R I X   F I N A L    T O U R N A M E N T   2 0 1 9
P E R S O N A L   S C O R E C A R D
G E N E R A T E D   :  1 6 . 1 1 . 2 0 1 9   1 8 : 4 4 : 3 6
PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM
F I N A L   " B "
10 Kuld, Enno SUMMA PLACE
Lõhmus, Jaak 45,60% 17.
SUMMA
B O A R D P-NS NS R-NS CNT P TR L R-EW EW P-EW SCORE OPPONENTS
1 12,0 9             10 6,0 60,0 Parker-Lauri
2 6,0 9           420 10 12,0 Parker-Lauri HOME
3 6,0 9           650 10 12,0 Parker-Lauri
4 10,0 9 100           10 8,0 Parker-Lauri
5 9,0 9 620           10 9,0 Parker-Lauri PREV
6 5,0 9           100 10 13,0 Parker-Lauri
7 15,0 10 650           17 3,0 58,0 Väärtnõu-Kilkson
8 11,0 10 450           17 7,0 Väärtnõu-Kilkson NEXT
9 4,0 10           100 17 14,0 Väärtnõu-Kilkson
10 11,0 10 650           17 7,0 Väärtnõu-Kilkson
11 4,0 10           130 17 14,0 Väärtnõu-Kilkson END
12 13,0 10 50           17 5,0 Väärtnõu-Kilkson
13 9,0 2 100 3 W -1 ♠9   10 9,0 40,0 Iher-Naber
14 6,0 2   3 W = Q 110 10 12,0 Iher-Naber
15 13,0 2 650 4 N +1 Q   10 5,0 Iher-Naber
16 13,0 2   3Nt E +2 ♣K 660 10 5,0 Iher-Naber
17 10,0 2 50 4♠ E -1 Q   10 8,0 Iher-Naber
18 17,0 2 630 3Nt S +1 6   10 1,0 Iher-Naber
19 10,0 10   3♣ W +1 Q 130 3 8,0 43,0 Vain-Lume
20 9,0 10   3Nt E = ♣4 600 3 9,0 Vain-Lume
21 16,0 10 1440 6Nt N = K   3 2,0 Vain-Lume
22 8,0 10   6Nt S -1 5 50 3 10,0 Vain-Lume
23 0,0 10   4♠x N -2 ♣A 500 3 18,0 Vain-Lume
24 0,0 10   6♠ S -2 9 100 3 18,0 Vain-Lume
25 6,0 10   3Nt E +2 5 660 15 12,0 45,0 Nirgi-Külaviir
26 11,0 10 100 3Nt E -1 ♣2   15 7,0 Nirgi-Külaviir
27 16,0 10 50 7♠ W -1 Q   15 2,0 Nirgi-Külaviir
28 0,0 10   5x S -4 ♠K 1100 15 18,0 Nirgi-Külaviir
29 0,0 10   4Ntx E +1 ♣4 1010 15 18,0 Nirgi-Külaviir
30 12,0 10 460 3Nt S +2 ♠7   15 6,0 Nirgi-Külaviir
31 10,0 10   4 E = ♣A 420 5 8,0 55,0 Lutter-Vainu
32 16,0 10 400 3Nt N = K   5 2,0 Lutter-Vainu
33 11,0 10 140 2♠ S +1 ♠6   5 7,0 Lutter-Vainu
34 4,0 10 50 3 W -1 ♠K   5 14,0 Lutter-Vainu
35 14,0 10   4♠ E +1 ♣J 650 5 4,0 Lutter-Vainu
36 0,0 10   3♠x S -2 ♣9 500 5 18,0 Lutter-Vainu
37 7,0 16   1♠ W +2 K 140 10 11,0 35,0 Staal-Kaasik
38 18,0 16 690 4♠x N +1 ♣4   10 0,0 Staal-Kaasik
39 16,0 16   2 W +3 J 200 10 2,0 Staal-Kaasik
40 18,0 16 170 2 S +2 A   10 0,0 Staal-Kaasik
41 8,0 16 400 3Nt N = ♠3   10 10,0 Staal-Kaasik
42 6,0 16   1Nt W +2 ♠J 150 10 12,0 Staal-Kaasik
43 17,0 10 100 3Nt E -2 ♣5   1 1,0 58,0 Voolma-Mättik
44 18,0 10 300 3x E -2 J   1 0,0 Voolma-Mättik
45 12,0 10   2Nt N -1 ♠K 100 1 6,0 Voolma-Mättik
46 4,0 10   2♠ W = K 110 1 14,0 Voolma-Mättik
47 7,0 10   4♠ E = ♣2 420 1 11,0 Voolma-Mättik
48 0,0 10   3Ntx W +1 7 950 1 18,0 Voolma-Mättik